Рубрикатор

Как выбрать сечение кабеля - советы проектировщика

Опубликовано пользователем Елена Штейн Задать вопрос , Avtoritet.net

 

 

На рынках часто можно увидеть написанные от руки таблички, указывающие, какой кабель необходимо приобрести покупателю в зависимости от ожидаемого тока нагрузки. Не верьте этим табличкам, так как они вводят Вас в заблуждение. Сечение кабеля выбирается не только по рабочему току, но и еще по нескольким параметрам.


Прежде всего, необходимо учитывать, что при использовании кабеля на пределе его возможностей жилы кабеля нагреваются на несколько десятков градусов. Приведенные на рисунке 1 величины тока предполагают нагрев жил кабеля до 65 градусов при температуре окружающей среды 25 градусов. Если в одной трубе или лотке проложено несколько кабелей, то вследствие их взаимного нагрева (каждый кабель нагревает все остальные кабели) максимально допустимый ток снижается на 10 – 30 процентов.

Также максимально возможный ток снижается при повышенной температуре окружающей среды. Поэтому в групповой сети (сеть от щитков до светильников, штепсельных розеток и других электроприемников) как правило, используют кабели при токах, не превышающих значений 0,6 – 0,7 от величин, приведенных на рисунке 1.

Допустимый длительный ток кабелей с медными жилами

Рис. 1. Допустимый длительный ток кабелей с медными жилами

Исходя из этого повсеместное использование автоматических выключателей с номинальным токов 25А для защиты розеточных сетей, проложенных кабелями с медными жилами сечением 2,5 мм2 представляет опасность. Таблицы снижающих коэффициентов в зависимости от температуры и количества кабелей в одном лотке можно посмотреть в Правилах устройства электроустановок (ПУЭ).

Дополнительные ограничения возникают, когда кабель имеет большую длину. При этом потери напряжения в кабеле могут достичь недопустимых значений. Как правило, при расчете кабелей исходят из максимальных потерь в линии не более 5%. Потери рассчитать не сложно, если знать величину сопротивления жил кабелей и расчетный ток нагрузки. Но обычно для расчета потерь пользуются таблицами зависимости потерь от момента нагрузки. Момент нагрузки вычисляют как произведение длины кабеля в метрах на мощность в киловаттах.

Данные для расчета потерь при однофазном напряжении 220 В показаны в таблице1. Например для кабеля с медными жилами сечением 2,5 мм2 при длине кабеля 30 метров и мощности нагрузки 3 кВт момент нагрузки равен 30х3=90, и потери составят 3%. Если расчетное значение потерь превышает 5%, то необходимо выбрать кабель большего сечения.

Таблица 1. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 220 В при заданном сечении проводника

Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 220 В при заданном сечении проводника

По таблице 2 можно определить потери в трехфазной линии. Сравнивая таблицы 1 и 2 можно заметить, что в трехфазной линии с медными проводниками сечением 2,5 мм2 потерям 3% соответствует в шесть раз больший момент нагрузки.

Тройное увеличение величины момента нагрузки происходит вследствие распределения мощности нагрузки по трем фазам, и двойное – за счет того, что в трехфазной сети при симметричной нагрузке (одинаковых токах в фазных проводниках) ток в нулевом проводнике равен нулю. При несимметричной нагрузке потери в кабеле возрастают, что необходимо учитывать при выборе сечения кабеля.

Таблица 2. Момент нагрузки, кВт х м, для медных проводников в трехфазной четырехпроводной линии с нулем на напряжение 380/220 В при заданном сечении проводника (чтобы увеличить таблицу, нажмите на рисунок)

Момент нагрузки, кВт х м, для медных проводников в трехфазной четырехпроводной линии с нулем на напряжение 380/220 В при заданном сечении проводника

Потери в кабеле сильно сказываются при использовании низковольтных, например галогенных ламп. Это и понятно: если на фазном и нулевом проводниках упадет по 3 Вольта, то при напряжении 220 В мы этого скорее всего не заметим, а при напряжении 12 В напряжение на лампе упадет вдвое до 6 В. Именно поэтому трансформаторы для питания галогенных ламп необходимо максимально приближать к лампам. Например при длине кабеля 4,5 метра сечением 2,5 мм2 и нагрузке 0,1 кВт (две лампы по 50 Вт) момент нагрузки равен 0,45, что соответствует потерям 5% (Таблица 3).

Таблица 3. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 12 В при заданном сечении проводника

Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 12 В при заданном сечении проводника

Приведенные таблицы не учитывают увеличения сопротивления проводников от нагрева за счет протекания по ним тока. Поэтому если кабель используется при токах 0,5 и более от максимально допустимого тока кабеля данного сечения, то необходимо вводить поправку. В простейшем случае если Вы рассчитываете получить потери не более 5%, то рассчитывайте сечение исходя из потерь 4%. Также потери могут возрасти при наличии большого количества соединений жил кабелей.

Кабели с алюминиевыми жилами имеют сопротивление в 1,7 раза большее по сравнению с кабелями с медными жилами, соответственно и потери в них в 1,7 раза больше.

Вторым ограничивающим фактором при больших длинах кабеля является превышение допустимого значения сопротивления цепи фаза – ноль. Для защиты кабелей от перегрузок и коротких замыканий, как правило, используют автоматические выключатели с комбинированным расцепителем. Такие выключатели имеют тепловой и электромагнитный расцепители.

Электромагнитный расцепитель обеспечивает мгновенное (десятые и даже сотые доли секунды) отключение аварийного участка сети при коротком замыкании. Например автоматический выключатель, имеющий обозначение С25, имеет тепловой расцепитель на 25 А и электромагнитный на 250А. Автоматические выключатели группы «С» имеют кратность отключающего тока электромагнитного расцепителя к тепловому от 5 до 10. Но при расчете линии на ток короткого замыкания берется максимальное значение.

В общее сопротивление цепи фаза – ноль включаются: сопротивление понижающего трансформатора трансформаторной подстанции, сопротивление кабеля от подстанции до вводного распределительного устройства (ВРУ) здания, сопротивление кабеля, проложенного от ВРУ к распределительному устройству (РУ) и сопротивление кабеля собственно групповой линии, сечение которого необходимо определить.

Если линия имеет большое количество соединений жил кабеля, например групповая линия из большого количества светильников, соединенных шлейфом, то сопротивление контактных соединений также подлежит учету. При очень точных расчетах учитывают сопротивление дуги в месте замыкания.

Полное сопротивление цепи фаза- ноль для четырехжильных кабелей приведены в таблице 4. В таблице учтены сопротивления как фазного, так и нулевого проводника. Значения сопротивлений приведены при температуре жил кабелей 65 градусов. Таблица справедлива и для двухпроводных линий.

Таблица 4. Полное сопротивление цепи фаза - ноль для 4-жильных кабелей, Ом/км при температуре жил 65оС

Полное сопротивление цепи фаза - ноль для 4-жильных кабелей, Ом/км при температуре жил 65оС

В городских трансформаторных подстанциях, как правило, установлены трансформаторы мощностью от 630 кВ . А и более, имеющие выходное сопротивление Rтп менее 0,1 Ома. В сельских районах могут быть использованы трансформаторы на 160 – 250 кВ . А, имеющие выходное сопротивление порядка 0,15 Ом, и даже трансформаторы на 40 – 100 кВ . А, имеющие выходное сопротивление 0,65 – 0,25 Ом.

Кабели питающей сети от городских трансформаторных подстанций к ВРУ домов, как правило используют с алюминиевыми жилами с сечением фазных жил не менее 70 – 120 мм2. При длине этих линий менее 200 метров сопротивление цепи фаза – ноль питающего кабеля (Rпк) можно принять равным 0,3 Ом. Для более точного расчета необходимо знать длину и сечение кабеля, либо измерить это сопротивление. Один из приборов для таких измерений (прибор Вектор) показан на рис. 2.

Прибор для измерения сопротивления цепи фаза-ноль "Вектор"

Рис. 2. Прибор для измерения сопротивления цепи фаза-ноль "Вектор"

Сопротивление линии должно быть таким, чтобы при коротком замыкании ток в цепи гарантированно превысил ток срабатывания электромагнитного расцепителя. Соответственно, для автоматического выключателя С25 ток короткого замыкания в линии должен превысить величину 1,15х10х25=287 А, здесь 1,15 – коэффициент запаса. Следовательно, сопротивление цепи фаза – ноль для автоматического выключателя С25 должно быть не более 220В/287А=0,76 Ом. Соответственно для автоматического выключателя С16 сопротивление цепи не должно превышать 220В/1,15х160А=1,19 Ом и для автомата С10 – не более 220В/1,15х100=1,91 Ом.

Таким образом, для городского многоквартирного дома, принимая Rтп=0,1 Ом; Rпк=0,3 Ом при использовании в розеточной сети кабеля с медными жилами с сечением 2,5 мм2, защищенного автоматическим выключателем С16, сопротивление кабеля Rгр (фазного и нулевого проводников) не должно превышать Rгр=1,19 Ом – Rтп – Rпк = 1,19 – 0,1 – 0,3 = 0,79 Ом. По таблице 4 находим его длину – 0,79/17,46 = 0,045 км, или 45 метров. Для большинства квартир этой длины бывает достаточно.

При использовании автоматического выключателя С25 для защиты кабеля сечением 2,5 мм2 сопротивление цепи должно быть менее величины 0,76 – 0,4 = 0,36 Ом, что соответствует максимальной длине кабеля 0,36/17,46 = 0,02 км, или 20 метров.

При использовании автоматического выключателя С10 для защиты групповой линии освещения, выполненной кабелем с медными жилами сечением 1,5 мм2 получаем максимально допустимое сопротивление кабеля 1,91 – 0,4 = 1,51 Ом, что соответствует максимальной длине кабеля 1,51/29,1 = 0,052 км, или 52 метра. Если такую линию защищать автоматическим выключателем С16, то максимальная длина линии составит 0,79/29,1 = 0,027 км, или 27 метров.

 http://electrik.info